65 research outputs found

    Crosstalk suppression in a 650-V GaN FET bridgeleg converter using 6.7-GHz active gate driver

    Get PDF

    Multi-level active gate driver for SiC MOSFETs

    Get PDF

    Overtemperature Protection Circuit for GaN Devices Using a di/dt Sensor

    Get PDF

    Design Method for the Coil-System and the Soft Switching Technology for High-Frequency and High-Efficiency Wireless Power Transfer Systems

    Get PDF
    Increasing the resonant frequency of a wireless power transfer (WPT) system effectively improves the power transfer efficiency between the transmit and the receive coils but significantly limits the power transfer capacity with the same coils. Therefore, this paper proposes a coil design method for a series-series (SS) compensated WPT system which can power up the same load with the same DC input voltage & current but with increased resonant frequency. For WPT systems with higher resonant frequencies, a new method of realizing soft-switching by tuning driving frequency is proposed which does not need to change any hardware in the WPT system and can effectively reduce switching losses generated in the inverter. Eighty-five kHz, 200 kHz and 500 kHz WPT systems are built up to validate the proposed methods. Experimental results show that all these three WPT systems can deliver around 3.3 kW power to the same load (15 Ω) with 200 V input voltage and 20 A input current as expected and achieve more than 85% coil-system efficiency and 79% system overall efficiency. With the soft-switching technique, inverter efficiency can be improved from 81.91% to 98.60% in the 500 kHz WPT system

    A 6.7-GHz Active Gate Driver for GaN FETs to Combat Overshoot, Ringing, and EMI

    Get PDF
    Active gate driving has been demonstrated to beneficially shape switching waveforms in Si-and SiC-based power converters. For faster GaN power devices with sub-10-ns switching transients, however, reported variable gate driving has so far been limited to altering a single drive parameter once per switching event, either during or outside of the transient. This paper demonstrates a gate driver with a timing resolution and range of output resistance levels that surpass those of existing gate drivers or arbitrary waveform generators. It is shown to permit active gate driving with a bandwidth that is high enough to shape a GaN switching during the transient. The programmable gate driver has integrated high-speed memory, control logic, and multiple parallel output stages. During switching transients, the gate driver can activate a near-arbitrary sequence of pull-up or pull-down output resistances between 0.12 and 64 A hybrid of clocked and asynchronous control logic with 150-ps delay elements achieves an effective resistance update rate of 6.7 GHz during switching events. This active gate driver is evaluated in a 1-MHz bridge-leg converter using EPC2015 GaN FETs. The results show that aggressive manipulation of the gate-drive resistance at sub-nanosecond resolutions can profile gate waveforms of the GaN FET, thereby beneficially shaping the switch-node voltage waveform in the power circuit. Examples of open-loop active gate driving are demonstrated that maintain the low switching loss of constant-strength gate driving, while reducing overshoot, oscillation, and EMI-generating high-frequency spectral content
    corecore